Studi Kasus: Moderasi Konten
30K+ dokumen web dihapus & dianotasi untuk Moderasi Konten
yang berusaha untuk mengamankan ruang online tempat kita terhubung & berkomunikasi.
Seiring dengan terus berkembangnya penggunaan media sosial,
masalah cyberbullying telah muncul sebagai
rintangan yang signifikan untuk platform berjuang untuk
memastikan ruang online yang aman. Mengejutkan
38% orang menghadapi ini
perilaku yang merugikan setiap hari,
menekankan permintaan mendesak untuk inventif
pendekatan moderasi konten.
Organisasi saat ini bergantung pada penggunaan
kecerdasan buatan untuk mengatasi abadi
masalah cyberbullying secara proaktif.
Keamanan cyber:
Laporan Penegakan Standar Komunitas Q4 Facebook mengungkapkan – tindakan terhadap 6.3 juta konten intimidasi dan pelecehan, dengan tingkat deteksi proaktif sebesar 49.9%
Pendidikan:
A 2021 Studi menemukan itu 36.5%% dari siswa di Amerika Serikat antara usia 12 & 17 tahun mengalami cyberbullying pada satu titik atau lainnya selama sekolah mereka.
Menurut laporan tahun 2020, pasar solusi moderasi konten global bernilai USD 4.07 miliar pada tahun 2019 dan diperkirakan akan mencapai USD 11.94 miliar pada tahun 2027, dengan CAGR 14.7%.
Solusi Dunia Nyata
Data yang memoderasi percakapan global
Klien sedang mengembangkan otomatis yang kuat
Pembelajaran Mesin moderasi konten
model untuk penawaran Cloud-nya, yang untuknya mereka
sedang mencari vendor khusus domain yang
dapat membantu mereka dengan data pelatihan yang akurat.
Memanfaatkan pengetahuan kami yang luas dalam pemrosesan bahasa alami (NLP), kami membantu klien dalam mengumpulkan, mengkategorikan, dan membuat anotasi lebih dari 30,000 dokumen dalam bahasa Inggris dan Spanyol untuk membangun moderasi konten otomatis Model Pembelajaran Mesin yang bercabang menjadi konten Beracun, Dewasa, atau Eksplisit Seksual kategori.
Masalah
- Web mengorek 30,000 dokumen dalam bahasa Spanyol dan Inggris dari domain yang diprioritaskan
- Mengkategorikan konten yang dikumpulkan menjadi segmen pendek, sedang, dan panjang
- Memberi label pada data yang dikompilasi sebagai konten beracun, dewasa, atau eksplisit secara seksual
- Memastikan anotasi berkualitas tinggi dengan akurasi minimal 90%.
Solusi
- Web Memotong 30,000 dokumen masing-masing untuk bahasa Spanyol & Inggris dari BFSI, Perawatan Kesehatan, Manufaktur, Ritel. Konten selanjutnya dibagi menjadi dokumen pendek, sedang & panjang
- Berhasil melabeli konten yang diklasifikasikan sebagai konten beracun, dewasa, atau eksplisit secara seksual
- Untuk mencapai kualitas 90%, Shaip menerapkan proses kontrol kualitas dua tingkat:
» Level 1: Quality Assurance Check: 100% dari file yang akan divalidasi.
» Level 2: Analisis Kualitas Kritis Periksa: Tim CQA Shaips untuk menilai 15%-20% dari sampel retrospektif.
Hasil
Data pelatihan membantu membangun model ML moderasi konten otomatis yang dapat menghasilkan beberapa hasil yang bermanfaat untuk menjaga lingkungan online yang lebih aman. Beberapa hasil utama meliputi:
- Efisiensi untuk memproses data dalam jumlah besar
- Konsistensi dalam memastikan penegakan kebijakan moderasi yang seragam
- Skalabilitas untuk beradaptasi dengan pertumbuhan basis pengguna dan volume konten
- Moderasi Real-time dapat mengidentifikasi &
menghapus konten yang berpotensi berbahaya saat dibuat - Efektivitas biaya dengan mengurangi ketergantungan pada moderator manusia
Contoh Moderasi Konten
Beri tahu kami bagaimana kami dapat membantu inisiatif AI Anda berikutnya.